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Abstract

The field synergy equation for steady laminar convection heat transfer was derived by conditional variation calculus

based on the least dissipation of heat transport potential capacity. The optimum velocity field with the best heat transfer

performance and least flow resistance increase can be obtained by solving the synergy equation. The numerical simu-

lation of laminar convection heat transfer in a straight circular tube shows that the multi-longitudinal vortex flow in the

tube is the flow pattern that enhances the heat transfer enormously. Based on this result, a novel enhanced heat transfer

tube, the discrete double-inclined ribs tube (DDIR-tube), is developed. The flow field of the DDIR-tube is similar to the

optimal velocity field. The experimental results show that the DDIR-tube has better comprehensive heat transfer per-

formance than the current heat transfer enhancement tubes. The present work indicates that new heat transfer enhance-

ment techniques could be developed according to the optimum velocity field.

� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Heat transfer enhancement techniques have been

developing rapidly and there have been broad applica-

tions in the past several decades. Most of the techniques,

however, are based on experiences and experiments. For

instance, an enhancement element could be designed

according to researchers� experiences, and then its heat

transfer correlations are obtained by experiments or

numerical calculations [1–4]. The performances of con-

vective heat transfer are dependent on the velocity and
0017-9310/$ - see front matter � 2005 Elsevier Ltd. All rights reserv

doi:10.1016/j.ijheatmasstransfer.2005.02.035

* Corresponding author. Tel./fax: +86 10 6278 1610.

E-mail address: mja@tsinghua.edu.cn (J.-A. Meng).
temperature fields, so that modifying the velocity field

is the most direct approach to enhance convective heat

transfer. It is very difficult to find the best velocity field

that improves the heat transfer enhancement the most

even for an experienced researcher. The current research

method on heat transfer enhancement is technical and

lacks an optimization theory to guide the design for

various enhancement techniques.

Guo and his colleagues [5,6] investigated the 2D

boundary layer flow over a flat plate from the point

of view of the relation between flow field and tempera-

ture field. The energy equation was regarded as a con-

duction equation where the convection term is taken

as a heat source. The wall heat flux is equal to the over-

all strength of the heat sources inside the thermal
ed.
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Nomenclature

A anti-temperature, K

C0,C1 Lagrange multipliers

CU coefficient of the synergy force, N/m2K

cp specific heat, J/kgK

D hydraulic diameter

F volume force, N/m3

f frictional factor

J Lagrange function

JU total viscous dissipation, W

JW dissipation of heat transfer potential capac-

ity, W/K

k thermal conductivity, W/mK

L total length of tube, m

Nu Nusselt number

P pressure, N/m2

Pr Prandtl number

Re Reynolds number

S surface area, m2

T temperature, K

U velocity vector, m/s

V volume, m3

u,v,w velocity components in x,y,z direction, m/s

x,y,z coordinates, m

y ratio of twisted

Greek symbols

C Surface on domain

U viscous dissipation function, W/m3

X domain

l dynamic viscosity, Pas

q density, kg/m3

Subscripts

c cool

e enhancement tube

f fluid

h high

int inlet

out outlet

s smooth tube

m mean

w wall

x,y x,y direction
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boundary layer. This implies that the convection heat

transfer can be enhanced by increasing the quantity of

the integral of the convection terms (heat sources) over

the thermal boundary layer. Based on their analysis,

they proposed the principle of field synergy for convec-

tive heat transfer enhancement. It states that the better

the coordination of velocity and heat flow fields is, the

higher is the heat transfer rate of convection at given

velocity and temperature gradient. The complete syn-

ergy between velocity and temperature fields occurs

when the temperature gradient is always parallels to

the velocity vector. It should be noted that complete

synergy between velocity and temperature fields can

never be realized, the temperature gradient is almost

normal to the velocity vector for most convective heat

transfer problems, such as convections in tubes. There-

fore, the convection heat transfer can be greatly en-

hanced by improving the coordination between the

fluid and heat flow fields.

The flow field, however, influences the temperature

field according to the energy equation. We can try to

make the source term as large as possible. This paper

will derive the optimum velocity field equation for

steady laminar convection heat transfer. The optimum

velocity field in tube will be found out by numerically

solving the optimum velocity field equation. A novel

enhanced heat transfer tube is developed according to

the optimum velocity field.
2. Optimization of flow field for laminar convection heat

transfer

Mechanical work should be paid to maintain the

fluid flow because of the viscous dissipation. The viscous

dissipation function of Newtonian fluid is,

U ¼ l 2
ou
ox

� �2

þ 2
ov
oy

� �2

þ 2
ow
oz

� �2

þ ou
oy

þ ov
ox

� �2
"

þ ou
oz

þ ow
ox

� �2

þ ov
oz

þ ow
oy

� �2
#

ð1Þ

where u, v, and w are the velocity components along x, y,

z directions, respectively. The mechanical work main-

taining the fluid flow equals to the integral of the viscous

dissipation function over the whole domain, that is,

JU ¼
Z
X
UdV ð2Þ

Heat transport is a typical irreversible process, and

something should be also paid out when heat is trans-

ferred from high temperature to low temperature. It is

just like that mechanical work must be paid to sustain

the flows from inlet to outlet.

Boit defined the thermal potential and thermal dissi-

pation function and presented a variation calculus to

heat transfer that leads to a Lagrange Equation in the

generalized coordinates [7,8]. However, the heat trans-
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port equation by Boit is only a quasi-variation formula-

tion and is given for an approximate solution. The phys-

ical meaning of the heat transport equation is somewhat

vacuous [9]. The heat dissipation function defined by

Boit seems not reasonable for heat transport process.

In other words, it could not be said that heat is dissi-

pated in a heat transfer process.

Guo et al. [10] defined the heat transfer potential

capacity and the dissipation function. Their physical

meanings are the overall heat transfer capability and

the dissipation rate of the heat transfer capacity, respec-

tively. The dissipation function of the heat transfer po-

tential capacity is the payout for heat transport. The

total dissipation of the heat transfer potential capacity

JW in heat transfer domain X is

JW ¼ 1

2

Z
X
kðrT Þ2 dV ð3Þ

It is proved to be valid for steady heat conduction

optimization problem. According to the principle, the

most effective transport path can be constructed by

inserting the given amount of high conductivity material

in the conduction domain [10].

For laminar convection in tube with constant ther-

mophysical properties and without internal heat source,

the dissipation of heat transfer potential capacity corre-

sponds to the heat transfer performances. Unlike the

steady heat conduction, convection heat transfer can

not be optimized only by the minimal dissipation of heat

transfer potential capacity because the velocity field

influences the heat transfer enormously. Xia [11] took

the dissipation of heat transfer potential capacity as

the evaluation criterion for the heat transfer perfor-

mance, and used viscous dissipation to evaluate the loss

of mechanical work in the flow process. He indicated

that the optimum velocity field could be obtained by

the variation calculus. Therefore, for the laminar con-

vection heat transfer with constant thermophysical

properties and without internal heat generation, the

optimum velocity field could be obtained by minimizing

the dissipation of heat transport potential capacity

under the condition of certain viscous dissipation. This

is a functional problem which can be solved by the con-

ditional variation calculus. Meng [12] studied this func-

tional problem by variational principles.

The condition for the least dissipation of heat trans-

fer potential capacity is

dJW ¼ 0 ð4Þ

The constant viscous dissipation or mechanical work

payout can be expressed as

dJU ¼ 0 ð5Þ

For the flow boundary condition, the inlet velocity is

given or the flow is assumed to be fully developed, which

is described by variation symbol as
dU jin ¼ 0 or dU jin ¼ dU jout ð6Þ

For the isothermal or constant heat flux thermal

boundary condition, there is

dT jw ¼ 0 or dðkrT Þjw ¼ 0 ð7Þ

In addition, the convective heat transfer must satisfy

the continuity equation,

r � ðqUÞ ¼ 0 ð8Þ

and the energy equation,

kr2T � qcpU � rT ¼ 0 ð9Þ

To get the optimal flow field, we need to establish a

Lagrange function which includes the objective and con-

straint functions, then do the variation calculus to the

Lagrange function and solve the equations of Lagrange

multipliers and the constraint functions [13]. The estab-

lished Lagrange function is,

J � ¼
Z
X

1

2
kðrT Þ2 þ C0Uþ Aðkr2T � qcpU � rT Þ

�

þC1r �U
�
dX ð10Þ

where C0, A, C1 are Lagrange multipliers, C0 is required

to be constant, A and C1 are functions of U, T, and the

position. We could derive the following Eq. (11)–(14) by

the variations of J* with respect to T and U,

kr2Aþ qcpU � rA� kr2T ¼ 0 ð11Þ
Z
C
f½krT � ðkrAþ qcpUAÞ�dT þ AdrTgd~S ¼ 0 ð12Þ

�2C0lr2U� qcpUrA�rC1 ¼ 0 ð13Þ
Z
C
ð2C0P þ C1ÞdU � d~S ¼ 0 ð14Þ

Eqs. (11) and (13) are the equations of Lagrange mul-

tipliers. Eqs. (12) and (14) are the boundary conditions

of Eqs. (11) and (13) respectively.

Eqs. (11) and (12) show that A is of temperature

dimension, and it is defined as anti-temperature because

Eq. (11) is similar to an energy equation with a contrary

velocity field, �U, and a heat generation item of �k$2T.

On the wall surface, Eq. (12) can be rewritten as Aw = 0

for isothermal wall, (�k$A)w = (�k$T)w for constant

heat flux, and (�k$A)w = 0 for adiabatic wall. At the

inlets and outlets, Eq. (12) can be rewritten as Ain = 0

for isothermal inlet and (A$T)in � (A$T)out for fully-

developed velocity and temperature.

According to the reference [14], C1 in Eqs. (13) and

(14) can be set as follows,

C1 ¼ �2C0P ð15Þ
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where P is pressure. Then Eq. (13) can be rewritten as,

lr2U� qU � rU�rP þ qcp
2C0

ArT þ qU � rU

� �
¼ 0

ð16Þ

Eq. (16) is similar to the momentum equation

(Navier–Stokes equation), with an additional force,

F ¼ ðqcp=2C0ÞArT þ qU � rU

¼ CUArT þ qU � rU ð17Þ

where constant CU is related to the input viscous dissipa-

tion; and A satisfies Eq. (11) and boundary condition

(12). Therefore, the governing equation for the optimal

velocity field could be further reduced to

lr2U� qU � rU�rP þ ðCUArT þ qU � rUÞ ¼ 0

ð18Þ

The velocity field satisfying Eq. (18) will lead to the

best performance of heat transfer. On the other words,

any changes of the velocity field could only weaken the

heat transfer when the viscous dissipation maintains

constant. According to the principle of field synergy

for convective heat transfer, the optimum velocity field

is in better synergy with the temperature field. The Eq.

(18) is defined as the field synergy equation for convec-

tive heat transfer and the optimum additional force

F = CUA$T + qU Æ $U is named as synergy force. Obvi-

ously, the synergy force is related to the velocity field

and the temperature gradient field. It is a special force

that drives the fluid flow in synergy with the heat trans-

fer, that is, promotes the fluid to flow along the direction

of the temperature gradient. The field synergy equation

and synergy force are completely consistent with the

suggestion by Guo [5] who indicated the concept of field

synergy for convective heat transfer, i.e. the heat transfer

could be enhanced most if the velocity and heat flux vec-

tors are in the same direction. The space distribution of

the synergy force is dependent on the characteristics of

heat transport, i.e. the distribution of temperature T,

anti-temperature A and velocity U. The potential effect

of synergy force is to drive fluid to flow along the heat

flux or in the reverse direction. However, because of

the constraint of the actual boundary, the optimum

flowing pattern governed by the field synergy equation

is generally more complicated.

The field synergy equation for convective heat trans-

fer is similar to but not an ordinary momentum equation

(Navier–Stokes equation) because it contains a virtual

additional force, the synergy force. The synergy force

of the field synergy equation was derived by conditional

variation calculus. It does not exist in nature. Therefore,

the optimum velocity field indicates the basic character-

istics of the flow pattern that benefits the heat transfer

mostly. If an enhancement element could create a veloc-

ity field similar to the optimum velocity field, it will have
a very satisfactory performance in heat transfer and flow

resistance. The most direct application of the synergy

equation is to offer a guidance for selecting and design-

ing an appropriate enhancement technique.
3. The optimum velocity field for laminar convection in

circular tube

The laminar convection heat transfer enhancement in

tubes is a classical problem with wide engineering appli-

cations. Circular tubes are commonly used as heat trans-

fer elements in tube-shell heat exchangers. The optimum

velocity field for laminar convection heat transfer in the

tube can be obtained through solving the field synergy

equation under a certain flow and thermal boundary

conditions.

A straight circular tube with 20 mm in diameter and

30 mm in length is selected for numerical simulation.

Only one half of the cross-section of the tube is analyzed

due to symmetry. Both the flow and temperature are as-

sumed to be fully developed and the wall is isothermal.

The wall temperature is 310 K; the average temperature

of the inlet fluid is 300 K; the inlet Reynolds number is

400.

FLUENT 6.0 is used to solve the field synergy equa-

tion numerically. The UDF function in FLUENT 6.0 is

used for solving the anti-temperature Eq. (12). In the

numerical simulation, the anti-temperature equation is

solved synchronously with the continuity equation,

velocity field synergy equation and energy equation.

The algorithm of SIMPLEC is used to uncouple the

pressure and velocity. The QUICK format is used for

the divergence of both the field synergy and energy

equations.

The numerical solutions with different constant CU

(corresponding to certain viscous dissipation work) re-

sult in different flow patterns. For a given CU, a flow

field can be numerically obtained, then, the viscous dis-

sipation can be calculated. That is, CU is related to vis-

cous dissipation. The range of CU is from �0.0005 to

�0.02 for solving the field synergy equation in the

straight circular tube. When jCUj is small, four longitu-

dinal vortexes occur in the cross-section, and the

strength of the longitudinal vortexes increases with the

increasing jCUj. When jCUj is larger than a critical value,

the number of the longitudinal vortexes in the cross-sec-

tion change from four to eight. Furthermore, when jCUj
increases continuously to another higher value, the

numerical calculation of the velocity field can not con-

verge, which may be attributed to the transition to tur-

bulence for very large jCUj. Fig. 1 shows a typical

numerical result of the cross-sectional flow field

(Re = 400, CU = �0.01). Compared with the fully-devel-

oped laminar convection heat transfer in a circular tube

((fRe)s = 64, Nus = 3.66), the flow viscous dissipation is



Fig. 1. Optimum flow field of laminar heat transfer in circular

tube (Re = 400).
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increased by 17%, the heat transfer rate (the Nusselt

number) is increased by 313% in the case of Fig. 1.

The numerical analysis shows that multiple longitudi-

nal vortex flow is the optimal flow pattern for laminar

flow in tube. Therefore, construct a multi-longitudinal

vortex flow can markedly enhance the convection heat

transfer in tubes, which can guide the researcher to de-

sign the enhanced element.
4. A novel enhanced heat transfer tube

Based on the field synergy analysis for laminar heat

transfer, a novel enhanced tube, discrete double-inclined

ribs tube (DDIR-tube) [15], was developed. Fig. 2 is the

photo of the DDIR-tube. Multi-longitudinal vortexes

flow can be induced by the periodical surface variation

(discrete double-inclined ribs). The outer diameter of

the DDIR-tube for experiment is 20 mm. There are three

pairs of double-inclined ribs in the cross-section, the

pitch is 12 mm, the rib length in axial direction is

6 mm, the inclined angle is about 45�, and the inner

rib height is 0.85 mm.

The numerical simulation by the field synergy equa-

tion shows that the optimal velocity field of the laminar
Fig. 2. Photo of the novel enhanced heat transfer tube.
heat transfer in tube is 2–4 multi-longitudinal vortex

pairs. The further numerical analysis also shows that

the more the multi-longitudinal vortexes in tube, the

more remarkable the turbulent heat transfer enhance-

ment is. Due to the limitation of manufacture, the num-

ber of the discrete double-inclined rib pairs in the same

cross-section should be determined by the tube diameter.

For the commonly used tubes of U 19–25 mm, three to

seven discrete double-inclined ribs pairs are recom-

mended when applying the pressing process.

Fig. 3 depicts the numerical cross-sectional flow field

in the DDIR-tube for Re = 1000 using the RNG k–e
model. It shows that strong multi-longitudinal vortex

flow is induced by the discrete double-inclined ribs on

the internal wall. The cross-sectional flow pattern of

the DDIR-tube is similar to the optimum flow field

obtained by solving the field synergy equation.

The experiments are performed to clarify the heat

transfer and flow characteristics of the DDIR tube.

The tested tube length is 2 m. The fluid outside the

DDIR-tube is deionized water, and the fluid inside the

tube is 22# lubricating oil. The experimental results of

heat transfer and flow resistance for the DDIR-tube

are shown in Fig. 4. For Re ranging from 500 to 2300,

the Nusselt numbers are increased by 250–650% with a

resistance increase of 120–300% compared with those

of laminar convection in a circular tube (L/D = 300)

with inlet effect considered. For Re ranging from 2300

to 15000, the Nusselt numbers are increased by 240–

110% with a resistance increase of 130–210% compared

with those of transitional and turbulent heat transfer in

a circular tube (L/D = 300).

The comparison of the comprehensive performances

is shown in Fig. 5. The subscript �e� means enhanced

tube, and �s� means smooth circular tube. It is seen from

Fig. 5 that the DDIR-tube is of good performance of

heat transfer enhancement. For example, comparing
Fig. 3. Numerical cross-sectional flow fields in the DDIR-tube.



0.0 5.0x103 1.0x104 1.5x104
0.00

0.05

0.10

0.15

f=64/Re

f=(0.79lnRe-1.64)-2

 DDIR-tube, Experimental
 DDIR-tube, Numerical
 Circular tube[16,18]

f

Re
0.0 5.0x103 1.0x104 1.5x104

0

50

100

150

0.141/3

1.86 Re Pr f
s

w

D
Nu

L
=

0.112/3

1/2 2/3

(f/8)(Re–1000)Prf 1
1+12.7( 8) ( -1)s

f

PrD
Nu =

f/ Pr L Pr
+[

[ [

[[ ]

] ]

] ]

 DDIR-tube, Experimental
 DDIR-tube, Numerical
 Circular tube[16,17,19]

N
u/

Pr
f1/

3 (P
r w

/P
r f)

0.
11

Re

w

µ
µ

Fig. 4. Experimental and numerical results of heat transfer and flow resistance for DDIR-tube.

1x103 1x104
0

1

2

3

4

5

 DDIR-tube
 Twisted-tape inserts(y=4.5)
 Spirally grooved tube

      Ravigururaja and Bergles(1996)
 Micro-fin tube (Turbo-BII)

      Webb etc.(2000)

PE
C

=(
N

u e
/N

u s
)/(

f e/
f s)

1/
3

Re

Fig. 5. PEC for different enhanced tubes.

3336 J.-A. Meng et al. / International Journal of Heat and Mass Transfer 48 (2005) 3331–3337
with laminar heat transfer in a circular tube (L/D = 300)

where the inlet effect is considered [16–19], the heat

transfer enhancement criteria PEC, defined as (Nue/

Nus)/(fe/fs)
1/3, is 2.0–3.3 for tubes with twisted tape in-

serts (y = 4.5) [20], however, the PEC of the DDIR-tube

is 3.2–4.7. Circular tube with twisted tape inserts are

commonly regarded as the best enhanced element in

the low Reynolds number region. Compared with the

circular tube with twisted tape inserts, PEC of the

DDIR-tube is 40–60% increased, the Nusselt number

is about 10% increased and the frictional resistance is

40–60% decreased in the Reynolds number region of

500–2300. The comprehensive performances of the

DDIR-tube are also better than that of the spirally

grooved tube [21], but are slightly worse than that of

the micro-fin tube (Turbo-BII) [22]. The DDIR-tube is

easier to be manufactured and could have good perfor-

mance for counteracting scaling due to the induced mul-

tiple longitudinal vortex flow.
5. Conclusions

The field synergy equation of steady laminar convec-

tion heat transfer was derived with the least dissipation

of heat transport potential capacity as the optimum tar-

get under the condition of given viscous dissipation by

the variational principle for the first time.

Numerical solution of the field synergy equation of

laminar convection heat transfer in a straight circular

tube together with other governing equations indicates

that the multi-longitudinal vortex flow is the best way

for heat transfer enhancement in laminar convection in

tubes. The optimum velocity field has excellent perfor-

mances of heat transfer and resistance.

A novel tube, DDIR-tube, was developed. The multi-

longitudinal vortex flow can be induced by the discrete

double-inclined ribs on the internal wall tube, which is

similar to the optimal flow pattern given by the synergy

equation. The numerical calculation and experiment

show that the comprehensive performance of enhanced

laminar heat transfer in DDIR-tube are better than that

of the currently-known enhancement techniques. The

Nusselt number can be increased by 250–650% with a

resistance increase of 120–300% compared with those

of laminar heat transfer in a circular tube (L/D = 300)

with inlet effect considered for Re = 500–2300. And the

Nusselt number can be increased by 240–110% with a

resistance increase of 130–210% compared with that of

transitional and turbulent heat transfer in a circular tube

(L/D = 300) for Re = 2300–15000.
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